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Abstract

We construct an invariant surface in a non-invariant domain of phase portrait of one piecewise
linear dynamical system which appears naturally in gene networks modeling. This surface does
not intersect the invariant neighborhood of a cycle which we have found in that phase portrait
earlier, neither it contains other cycles of this system. All trajectories of this system contained
in this surface are attracted to a point which plays role of an equilibrium point for smooth
dynamical systems of this type.
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Introduction

We continue our studies of nonlinear dynamical systems which simulate functioning of some simple
circular gene networks. A typical example of these systems has the form

dm1

dt
= f1(p3)− k1m1;

dp1
dt

= g1(m1)− k2p1;
dm2

dt
= f2(p1)− k3m2;

dp2
dt

= g2(m2)− k4p2;
dm3

dt
= f3(p2)− k5m3;

dp3
dt

= g3(m3)− k6p3. (1)

Here all function fj , gj are assumed to be monotonic and non-negative, parameters kj are posi-
tive, non-negative variables p1, p2, p3, and m1, m2, m3 denote concentrations of three proteins,
respectively, of three mRNAs in this circular gene network. The functions f1, f2, f3 are decreasing,
this means that they describe negative feedbacks. The functions g1, g2, g3 are increasing, they
correspond to positive feedbacks in the gene network.

In one very particular case

fi(w) = α · (1 + wn)−1 + α0; gi(u) = µu; k2i−1 = 1; k2i = µ > 0; i = 1, 2, 3, (2)

the system (1) was introduced in [1, 2], and later studied in [3, 4]. So, the system (1), (2) is
symmetric with respect to cyclic permutations of the pairs

(m1, p1)→ (m2, p2)→ (m3, p3)→ (m1, p1).

∗In memory of Roin Nadiradze

Tbilisi Mathematical Journal Special Issue (7 - 2021), pp. 49–56.
Tbilisi Centre for Mathematical Sciences.

Received by the editors: 11 December 2019.
Accepted for publication: 03 April 2020.



50 V. P. Golubyatnikov, L. S. Minushkina

Some asymmetric higher-dimensional analogues of the system (1) were considered in [5, 6, 7].
The main result of the present paper consists of construction of an invariant surface in a non-
invariant domain of the phase portrait of one dynamical system similar to (1). These studies are
motivated by the fact that such invariant surfaces are usually contained in boundaries of attraction
basins of stable cycles and other attractors in these phase portraits. In particular, such a surface
appears in a model of one natural gene network, see [8], and this observation follows the example
composed by S.Smale [9].

1 PL dynamical systems

We consider now piecewise linear version of the system (1):

dx0
dt

= L0(x5)− k0x0;
dx1
dt

= Γ1(x0)− k1x1;
dx2
dt

= L2(x1)− k2x2;

dx3
dt

= Γ3(x2)− k3x3;
dx4
dt

= L4(x3)− k4x4;
dx5
dt

= Γ5(x4)− k5x5, (3)

where monotonic step functions L2i and Γ2i+1 in the equations are defined as follows:

L2i(w) = k2i(a2i − 1), for − 1 ≤ w ≤ 0; L2i(w) = −1 for w > 0;

Γ2i+1(u) = k2i+1(a2i+1 − 1), for u > 0; Γ2i+1(u) = −1 for − 1 ≤ u ≤ 0.

All the variables satisfy the conditions xj + 1 ≥ 0, all parameters are positive, aj > 1. Here and
below i = 0, 1, 2; j = 0, 1, . . . , 5.

Analogous gene networks models with step functions in right hand sides of the equations were
studied in [10, 11] and used Boolean analysis combined with qualitative theory of ODE, see also
[12, 13, 14] and references therein.

The main aim of the publications cited above is description of phase portraits of these dynamical
systems in order to detect their closed trajectories (cycles) and to localize them there. Important
problems of construction of integral submanifolds, detection of attractors, the basins of their at-
traction, and other geometric characteristics of these phase portraits appear here naturally. We
study in this paper one case of the first of these problems.

Consider the parallelepiped Q6 =
j=5∏
j=0

[−1, aj − 1] ⊂ R6. The origin of R6 is contained in Q6,

thus, the coordinate hyperplanes xj = 0 subdivide Q6 to 64 smaller parallelepipeds which we call
blocks for brevity, and enumerate by binary multi-indices {ε0ε1ε2ε3ε4ε5} as follows:

εj = 0, if xj ≤ 0 for all points of this block; εj = 1 otherwise. (4)

Similar discretizations of phase portraits for other gene networks models (smooth, piecewise
linear, odd- and even-dimensional) were considered in [7, 15, 16]. As it was shown there, Lemmas
1.1 and 1.2 follow immediately from calculation of derivatives ẋj on the faces of Q6 and on the
coordinate planes xj = 0.

Lemma 1.1. Q6 is positively invariant domain of the system (3).

Lemma 1.2. For any pair B1, B2 of adjacent blocks of this decomposition, trajectories of all points
of their common 5-dimensional face F = B1 ∩B2 pass either from B1 to B2 or from B2 to B1.
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We denote below these transitions of trajectories as B1 → B2, respectively, B2 → B1. It follows
from Lemma 1.2 that the graph G composed by edges of boolean 6-dimensional cube B6 with the
vertices {ε0ε1ε2ε3ε4ε5} can be oriented according to directions of these arrows. Here εj = 0 or
εj = 1, as in (4).

Definition. The valence V (B) of a block B is a number of its 5-dimensional faces such that
trajectories of their points come out of B to its adjacent blocks.

In terms of graph theory this means that the vertex of the cube B6 corresponding to the block
B has outgoing degree V (B).

Remark 1. This definition is naturally formulated for dynamical systems of different dimen-
sions and “smoothness” analogous to (1), (3). The cycles of these systems described in [6, 7, 17]
are contained in the unions of 1-valent blocks and travel from block to blocks according to arrows of
some circular diagrams. For one analogous gene network model considered in [10], such a diagram
is called State Transition Diagram. It was shown in [11] that the systems (1) and (3) have cycles
in the domain Q6, and these cycles follow arrows of the diagram

{110011} −−−−→ {010011} −−−−→ {000011} −−−−→ {001011}x y
{110010} {001111}x y
{110000} {001101}x y
{110100} ←−−−− {111100} ←−−−− {101100} ←−−−− {001100}

(5)

All blocks listed here have valence 1. Let W1 be the union of these 1-valent blocks. This is an
invariant domain of the systems (1) and (3), cf. [6].

It follows from [18] that for the 6-dimensional systems (1) and (3) valence of blocks of partition
of Q6 equals either 1, or 3, or 5, and it is not difficult to verify that all 1-valent blocks are listed
in the diagram (5), and the diagram (6) below contains all 5-valent blocks. Let W3 and W5 be the
unions of 3-valent, respectively, 5-valent blocks. The non-invariant domain W3 contains 40 blocks.

2 Non-invariant domain W5

The main goal of the present paper is description of behavior of trajectories of the system (3) in
the non-invariant domain W5 ⊂ Q6 \ (W1 ∪W3). The domain W5 consists of 12 blocks which are
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connected by the cyclic diagram

{111001} −−−−→ {011001} −−−−→ {011000} −−−−→ {011010}x y
{101001} {011110}x y
{100001} {010110}x y
{100101} ←−−−− {100111} ←−−−− {100110} ←−−−− {000110}

(6)

Each arrow of this diagram shows a possible direction of transition of trajectories from block to
block. In contrast with the diagram (5) where each arrow shows the unique direction, most of the
transitions of trajectories of points in W5 are not shown in (6). For example, trajectories of points
of the block {011001} can pass to the following 3-valent blocks: {001001}, {010001}, {011101},
and {011011}. The arrow {011001} → {011000} shows transition of trajectories between 5-valent
blocks.

Let F0, F1, etc. be the intersections of adjacent blocks in the diagram (6):
F0 = {111001} ∩ {011001}, where x0 = 0; F1 = {011001} ∩ {011000}, where x5 = 0;
F2 = {011000} ∩ {011010}, where x4 = 0; F3 = {011010} ∩ {011110}, where x3 = 0;
F4 = {011110} ∩ {010110}, where x2 = 0; ... F8 = {100111} ∩ {100101}, where x4 = 0;
. . .F12 = F0.

Note, that on the face F0 we have x0 = 0, x1 > 0, x2 > 0, x3 < 0, x4 < 0, x5 > 0.
We assume below that for all j

kj = 1. (7)

Consider as an example the block {011001}, where the equations of the system (3) have the
form:

ẋ0 = −x0 − 1; ẋ1 = −x1 − 1; ẋ2 = −x2 − 1;

ẋ3 = −x3 − 1 + a3; ẋ4 = −x4 − 1 + a4; ẋ5 = −x5 − 1. (8)

Trajectory of a point P (0) = (0, x
(0)
1 , x

(0)
2 , x

(0)
3 , x

(0)
4 , x

(0)
5 ) ∈ F0 is described in the block {011001}

by the equations

x5 = −1 + (1 + x
(0)
5 )e−t; x0 = −1 + e−t; x1 = −1 + (1 + x

(0)
1 )e−t; x2 = −1 + (1 + x

(0)
2 )e−t;

x3 = a3 − 1 + (x
(0)
3 + 1− a3)e−t; x4 = a4 − 1 + (x

(0)
4 + 1− a4)e−t; (9)

or xj = cj + τ(x
(0)
j − cj), where τ := e−t, and cj equals either −1, or (aj − 1). So, these equations

describe a segment of a straight line.
If this trajectory starts at the point P (0) ∈ F0 and arrives at some moment t = t1 at a point

P (1) = (x
(1)
0 , x

(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 , 0) ∈ F1, then it follows from the equations (9) that coordinates of

this point P (1) are represented in the following way:

x
(1)
0 = −x(0)5 · e−t1 ; x

(1)
1 = (x

(0)
1 − x

(0)
5 ) · e−t1 ; x

(1)
2 = (x

(0)
2 − x

(0)
5 ) · e−t1 ;
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x
(1)
3 = (x

(0)
3 + (a3 − 1)x

(0)
5 ) · e−t1 ; x

(1)
4 = (x

(0)
1 + (a4 − 1)x

(0)
5 ) · e−t1 ; x

(1)
5 = 0; (10)

and e−t1 = (1 + x
(0)
5 )−1.

Remark 2. In a similar way the system (3) and its solutions are represented in all other blocks
of the partition (4) of the invariant domain Q.

We study in this paper only those trajectories of the system (3) which do not intersect coordinate
planes {xj = 0} ∩ {xk = 0} ⊂ R6 of codimension 2. Thus, in each of these block B trajectories of
its points are linear, and each of these trajectories intersects the boundary of B at an interior point
P ∗ of some face F ⊂ ∂B as t grows. We consider this point P ∗ as an initial data of the system
(3) in the block B′ such that F = B ∩B′, and so trajectories of the points continue to interiors of
adjacent blocks.

In the large, these trajectories are piecewise linear and their vertices are located on the coordinate
planes xj = 0.

Remark 3. Let us assign to each point P ∈W5 \ {O} the ray OP and its intersection with the
boundary ∂Q6 ≈ S5. For any t > 0, trajectories of some of the points of each of these faces should
remain in W5. Otherwise, the shifts along trajectories define a homotopy ∂Q6 → ∂Q6 \ (∂Q6∩W5),
and this contradicts to π5(S5) ≈ Z.

3 Invariant surface in non-invariant domain W5

Just for simplicity of exposition, from now on we consider the system (3) under additional assump-
tions:

a0 = a2 = a4; a1 = a3 = a5. (11)

Let a := a2i, b := a2i+1,
Now, following [11, 19] we look for a point P (0) ∈ F0 such that after 4 steps in the diagram (6)

along its trajectory it shifts to a point

P (4) = (x
(4)
0 , x

(4)
1 , 0, x

(4)
3 , x

(4)
4 , x

(4)
5 ) ∈ F4 such that for some positive µ we have:

x
(4)
3 = µx

(0)
1 , x

(4)
4 = µx

(0)
2 , x

(4)
5 = µx

(0)
3 , x

(4)
0 = µx

(0)
4 , x

(4)
1 = µx

(0)
5 .

Due to symmetry conditions (11), after 8 steps in the diagram (6) the point P (0) shifts along

its trajectrory to a point P (8) ∈ F8 with coordinates (x
(8)
0 , x

(2)
1 , x

(8)
2 , x

(8)
3 , 0, x

(8)
5 ) such that x

(8)
j =

µx
(4)
j−2 = µ2x

(0)
j−4; all subscripts are considered (mod 6). So, after 12 steps according to arrows of

the diagram (6) such point P (0) shifts along its trajectory to the point P (12) ∈ F0 with coordinates

x
(12)
0 = 0, x

(12)
1 = µ3x

(0)
1 , x

(12)
2 = µ3x

(0)
2 , x

(12)
3 = µ3x

(0)
3 , x

(12)
4 = µ3x

(0)
4 , x

(12)
5 = µ3x

(0)
5 . If µ = 1,

then trajectory of the point P (0) is a cycle and that 12 steps transformation F0 → F12 could be
called the Poincaré map of this cycle. However, this is not our case, see below.

For each face Fm in the diagram (6), let us construct 5-dimensional coordinate system

(O;X
(m)
1 , X

(m)
2 , X

(m)
3 , X

(m)
4 , X

(m)
5 ) as follows: Since the face Fm is contained in the coordinate

hyperplane xh = 0, where h + m ≡ 0 (mod 6), we put X
(m)
1 = ±x1−m, X

(m)
2 = ±x2−m, X

(m)
3 =

±x3−m, X
(m)
4 = ±x4−m, X

(m)
5 = ±x5−m. The signs are choosen so that each face Fm is contained

in the positive orthant of the coordinate system (O;X
(m)
1 , X

(m)
2 , X

(m)
3 , X

(m)
4 , X

(m)
5 ).

In our calculations below, we identify the points P (m) ∈ Fm with their column vectors OP (m),
m = 0, 1, . . . , 12.
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The representations (10) imply that if a point P (0) = (X
(0)
1 , X

(0)
2 , X

(0)
3 , X

(0)
4 , X

(0)
5 ) shifts along

its trajectory in the block {011001} to P (1) ∈ F1, then

P (1) =
M0P

(0)

(1 +X
(0)
5 )

, where M0 =


0 0 0 0 −1
1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 b− 1
0 0 0 1 a− 1

 . (12)

If the point P (1) shifts in the block {011000} along its trajectory to the point P (2) ∈ F2 which
shifts in {011010} to the point P (3) ∈ F3, and later shifts to P (4) ∈ F4, then for each of these steps

we have P (m+1) = (1 +X
(m)
5 )−1MmP

(m) where the matrices Mm are determined by analogues of

formulas (10), see Remark 2. Thus, for some positive ZIV = ZIV (X
(0)
5 , X

(1)
5 , X

(2)
5 , X

(3)
5 ) we have

the following representation of this 4-steps transformation: P (4) = (1 + ZIV )−1MIV P
(0), where

MIV =


0 b− 1 −1 0 0
0 −1 a(b− 1)−1 −1 0
0 1− b 0 b(a− 1)−1 −1
0 1− a 0 0 a
1 −1 0 0 0


is the product M3 ·M2 ·M1 ·M0.

All the shifts ϕm : Fm → Fm+1 are determined by fractional-linear transformations, similar to
(12), and trajectories of most points of Fm do not intersect Fm+1, since the diagram (6) is composed
by 5-valent blocks. So, each ray ρm = OP (m) ⊂ Fm described in Remark 3 is transformed by the
shift ϕm to a ray ρm+1 = OP (m+1) ⊂ Fm+1. At the same time, the inverse matrix M−1IV is “almost
positive”:

M−1IV =


aαβ bα a 1 1
aαβ bα a 1 0

ab+ bα− 1 b(b− 1)α a(b− 1) b− 1 0
aβ(a− b−1) ab− 1 a(a− 1) a− 1 0

aβ b a− 1 1 0

 .

Here α := a · (a− 1)−1, β := b · (b− 1)−1.

Lemma 3.1. The characteristic polynomial of MIV

Π(λ) = −λ5 − λ4 − λ3 + λ2 + λ · (1− abαβ) + 1; (13)

has only one real root λ1, and λ1 ∈ (0, 1).

The proof follows from Π(0) = 1, Π(1) < 0 and some calculations.
Let e1 ∈ F0 be the corresponding eigenvector of MIV . Then the composition of the shifts

Φ := ϕ11 ◦ϕ10 ◦ . . . ϕ1 ◦ϕ0 : F0 → F0 maps e1 to λ31(1+Z)−3e1 where Z > 0. Since λ31(1+Z)−3 < 1,
the map Φ transforms the ray ρ0 = OP (0) || e1 to itself so that for any point P̄ (0) ∈ ρ0 we have
Φ(P̄ (0)) ∈ ρ0, and |P̄ (0)| > |Φ(P̄ (0))|.

Thus, during 12 steps along the diagram (6), the points of this ray ρ0 compose an invariant
2-dimensional piecewise linear surface Σ ⊂ W5, and trajectories of all points of Σ spiral towards
the origin O ∈ Σ.
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Conclusions and future plans

So, we have proved the following

Theorem 3.2. If a > 1, b > 1, then the system (3), (7), (11) has an invartiant surface Σ ⊂ W5.
Trajectories of points of this surface are attracted by the origin.

1. Most of the agruments in the proof of this theorem remain valid without symmetry as-
sumptions (11). In this case the equations of the system (3) and its solutions in the blocks of the
partition (4) differ from (8) and (9) just by indices, thus the matrices M0, M1, M2, M3, MIV ,
M−1IV , MXII etc. are not too bulky. Here XII corresponds to 12 steps in the diagram (6). One can
verify that the matrix M−1XII which describes transformation Φ−1 is strictly positive, as above, so
the Frobenius-Perron theorem implies existence of an invariant surface Σ ⊂W5 in this asymmetrisc
case as well. However, the characteristic polynomial in this case is much more complicated than
Π(λ) in (13).

2. The statement of the theorem seems to be true for the system (3) without assumptions
(7) as well, cf. [7, 19]. In this case trajectories of the system are no longer piecewise linear, the
transformations ϕm : Fm → Fm+1 are not projective, but for any t > 0 trajectories of some of the
points of each of these faces should remain in W5, see Remark 3.

3. Similar construction can be reproduced for some circular chain of 3-valent blocks in W3,
analogous to the diagrams (5) and (6).

But since the partition of Q6 contains 40 blocks of valence 3, the combinatorial structure of
non-invariant domain W3 is much more cumbersome than that of W1 and W5, so analysis of shifts
along trajectories in these 3-valent blocks is not so transparent as for W1 and W5.

This work was supported by the Comprehensive Program for Fundamental Research of the
Siberian Branch RAS II.1, integration project N 0324-2018-0011, and grant of RFBR 18-01-00057.

Bibliography

[1] Elowitz M.B., Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature.
2000. V. 403, p.335–338.

[2] Gardner T.S., Cantor C.R., Collins J.J. Construction of a genetic toggle switch in Escherichia
coli. Nature. 2000. V.403, p. 339–342.

[3] Glyzin S.D., Kolesov, A.Y., Rozov N.Kh. Buffering in cyclic gene networks. Theoretical and
Mathematical Physics. 2016. V. 187, N 3, p 935–951.

[4] Glyzin S.D., Kolesov A.Y., Rozov N.Kh. Quasi-stable structures in circular gene networks.
Computational Mathematics and Mathematical Physics. 2018. V. 58, N 5, p. 659–679.

[5] Gedeon T., Pernarowski M., Wilander A. Cyclic feedback systems with quorum sensing cou-
pling. Bulletin of Mathematical Biology. 2016. V. 78, N 6, p. 1293–1317.

[6] Bukharina T.A., Golubyatnikov V.P., Furman D.P., Kazantsev M.V., Kirillova N.E. Mathe-
matical and numerical models of two asymmetric gene networks. Siberian Electronic Mathe-
matical Reports. 2018, v. 15, p. 1271–1283.



56 V. P. Golubyatnikov, L. S. Minushkina

[7] Golubyatnikov V.P., Ivanov V.V. Cycles in the odd-dimensional models of circular gene net-
works. J. Applied and Industrial Matematics. 2018. V. 12,, N 4, p. 648–657.

[8] Akinshin A.A., Bukharina T.A., Furman D.P., Golubyatnikov V.P. Mathematical modeling of
interaction of two cells in the proneural cluster of the wing imaginal disk of D. Melanogaster.
Siberian Journal of Pure and Applied Mathematics. 2014. V. 14, N 4, p. 3–10.

[9] Smale S. A mathematical model of two cells via Turing’s equation. AMS, Lectures in Applied
Mathematics. 1974. V. 6. p. 15–26.

[10] Glass L., Pasternack J.S. Stable oscillations in mathematcal models of biological control sys-
tems. Journal of Mathematical Biology. 1978. V. 6, p. 207–223.

[11] Golubyatnikov, V.P., Minushkina, L.S. Monotonicity of the Poincaré mapping in some models
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